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Introduction 

Parkinson’s disease (PD) is one of the most com-
mon neurodegenerative syndromes, causing a vari-
ety of motor and non motor syntoms [1,2]. Imag-
ing and neurophysiological studies in PD patients 
have demonstrated alterations in volume, diffusion 
properties and function in different cortical and 
subcortical structures, suggesting the disease may 
arise from dysfunction of different network compo-
nents [2].

Deep brain stimulation (DBS) is a highly effect-
ive therapy for PD; effectively restores motor func-
tion, reduces the levodopa dosage and motor com-
plications, and improves quality of life for patients 
with PD [3]. An important but unanswered ques-
tion is how STN-DBS modulates brain activity, 
thereby leading to its significant therapeutic effects 
on PD. A theory based in an abnormal striato-thal-
amo-cortical (STC) pathway was initially proposed, 

in which DBS would inhibit the STN, restoring the 
normal balance of these circuits [3,4]. Posteriorly, 
some studies using functional neuroimaging tech-
niques have tried to analyse the effects of STN-DBS 
in many different cortical and subcortical regions 
[5-9]; however, they are very scarce and have led to 
contradictory results. To our knowledge, there are 
no DTI studies evaluating the postoperative effects 
of DBS in the entire brain connectivity. The object-
ive of our study is to analyze changes in connectiv-
ity in PD patients following DBS, by comparing 
their postoperative DTI parameters with DTI in 
non-operated patients. 

Subjects and methods

Retrospective study of 19 PD patients (7 treated 
with bilateral DBS (group A), 12 patients under 
medical treatment (group B), matched according to 
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Introduction. Deep brain stimulation (DBS) of the subthalamic nucleus is currently an evidence-based therapeutic option 
for motor symptoms in patients with Parkinson’s disease (PD), although other non-motor symptoms can be affected by 
stimulation. 

Aim. Our objective is to evaluate the global changes in the connectivity of the large-scale structural network in PD patients 
that have obtained a benefit from subthalamic DBS. 

Subjects and methods. Retrospective study of 31 subjects: 7 PD patients with subthalamic DBS (group A), 12 age and 
gender-matched non-operated PD (B) and 12 healthy controls (C). All subjects had undergone a 1.5 T brain MRI with DTI. 
DICOM images were processed with the FSL5.0 software and TBSS tool. 

Results. The study group comprised 23 men and 8 women. No statistically significant differences in age, gender, scores on 
the H&Y scale and mean follow-up between group A and B were found, and in age and gender between groups A and C. 
Statistical analysis revealed differences in the fractional anisotropy of the different groups in certain areas: bilateral 
corticospinal tract, anterior thalamic radiations, bilateral fronto-occipital fascicle, both superior longitudinal fascicles, and 
left inferior longitudinal fascicle. 

Conclusions. In our series, PD patients treated with bilateral subthalamic DBS showed a significantly higher fractional 
anisotropy in widespread areas of the cerebral white matter; suggesting that neuromodulation produces connectivity 
changes in different neural networks.

Key words. Connectivity. Deep brain stimulation. Movement disorder’s surgery. Neuronal networks. Parkinson’s disease. 
Tractography.
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age, gender and score on the Hoehn and Yahr scale 
(H & Y), from our Movement Disorders Unit, and 
12 age and gender matched healthy controls (group 
C). The DTI images of the healthy controls were 
obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu).

Diagnosis was based on the criteria of ‘UK Par-
kinson’s disease society brain bank’ [9]. All patients 
were screened for the presence of cognitive im-
pairment using Mini Mental State Examination 
(MMSE). The severity of the disease was evaluated 
using the motor section of the Unified Parkinson’s 
Disease Rating Scale (UPDRS-III) and the stage of 
the disease was evaluated according to the modi-
fied staging system of H&Y. The exclusion criteria 
for cases was lack of improvement after bilateral 
STN-DBS of at least a 30% reduction in the UPDRS 
III subscores at the six months follow-up. This 
study was approved by our local research ethics 
committee.

Acquisition and processing of images

All images were acquired with a Siemens 1,5T TIM-
Trio scanner (12 channel Matrix head coil), DTI 
data with a spin echo, echo planar imaging sequence 
with 64 gradient directions and a b-value of 1,000 s/
mm2. and 1 mm isotropic voxels. DTI images were 
converted from DICOM format to NIFTI, and then 
were processed with FSl 5.0 software, using the ed-
dycorrect function [10], the BET (Brain extraction), 
Tool [11] and the Dtifit [12] consecutively for the 
correction and adjustment of distortions. ADNI im-
ages were adquired in General Electric 3T scanners, 
with b = 0 and 1,000 s/mm2 weighted volumes and 
using 2.7 mm isotropic voxels.

Voxelwise analysis of the FA data was carried 
out using the tract-based spatial statistics (TBSS) 
part of FMRIB Software Library (FSL) [13]. TBSS 
projects all subjects’ FA data onto a mean FA tract 
skeleton. Between-groups statistical analyses of the 
data skeletonized using FSL’s randomise tool were 
conducted to measure voxel-wise differences in FA 
between different groups. 

Threshold-free cluster enhancement and mul-
tiple comparison correction were carried out, and 
bidirectional contrasts in each comparison were 
applied. The loci of intergroup differences in the 
skeletonized FA data were identified anatomically 
in MNI space using various atlases among them 
The Johns Hopkins University white matter trac-
tography atlas (JHU-WM) [14], to correlate the sig-
nificant areas with anatomical fascicles. Whole 
brain tractography was first performed using a de-

terministic streamline approach. FA thresholds for 
initiating and continuing tracking were set to 0.2, 
and the tract-turning angle threshold was set to 30 
degrees. Fiber-tract pathways of interest were ex-
tracted for each subject individually using a seed 
mask containing the significant voxel clusters from 
the TBSS group analysis. For all tests, p < 0.05 was 
considered statistically significant. A critical p < 
0.05 was considered significant without adjusting 
for multiple comparisons [15]. Given the possibility 
of error due to the lack of adjustment by multiple 
comparisons, a verification of the results was per-
formed.

A comparison of the mean FA and number of fib-
ers of the corticospinal tract was carried out in the 
BrainLab workstation, between the DBS and con-
servative treatment patients. A probabilistic trac-
tography method, based on a multifiber model, was 
used in the performance of fiber tracking [16], (5,000 
streamline samples, 0.5-mm step lengths, curvature 
thresholds 0.2) [17]. CSTs for the M1 were deter-
mined by selection of fibers passing through seed 
and target ROIs. Placement of target ROIs was per-
formed according to literature [18]. Of 5,000 sam-
ples generated from each seed voxel, results for each 
contact were visualized, and thresholds and weight-
ings of tract probability at a minimum of 1 stream-
line through each voxel were set for analysis. Values 
of FA, and tract volume of the CSTs were measured. 
Statistical comparisons between groups were per-
formed using the paired Student’s t-test for normal 
distributions or the Mann-Whitney Rank sum test 
if normality failed. Normality was evaluated using 
the Kolmogorov-Smirnov test. The independent t-test 
was used for determination of the difference in val-
ues of tract volume and FA. The significance level 
for the p value was set at 0.05.

Results

The study group comprised 23 men (74,19%) and 8 
women (25,08%). There were no statistically signifi-
cant differences among groups in their following 
characteristics: Age, gender, disease duration, age 
at diagnosis, predominant symptoms, laterality of 
initial symptoms, and follow-up (p = 0,902, p = 1, 
p = 0.494, p = 0,102, p = 0,384, p = 0,291 and p = 
0,820, respectively) (Tables I and II).

Operated patients underwent two surgical uni-
lateral procedures in 87,7% of the cases (6 patients), 
while only one patient was operated on bilaterally 
in the same procedure. Mean time between both 
procedures was 37 days (0-81 days). Average im-
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provement of the disease measured by the Schwab 
& England daily activity scale was 45,7% (30-60). 
Mean follow-up time was 4.2 years (1-8) in group A 
and 4.2 years (1-8) in group B.

DTI parameters

Deep brain stimulation patients (group A) versus 
patients with Parkinson’s disease (group B)
Group A showed significantly greater FA/ than 
Group B. The right corticospinal tract (CT) pre-
sented differences in clusters along its trajectory 
and its passage through the brainstem and the cere-
bral peduncles. On the other hand, the left CT 
showed differences only in its passage through the 
cerebral peduncle brainstem. Differences were also 
observed in anterior thalamic radiations, certain 
areas of the corpus callosum (CC) (right minor for-
ceps), bilateral superior longitudinal fasciculus 
(SLF), and right fronto-occipital fasciculus (FOF) 
(Fig. 1).

Group B showed greater FA/ than group A in 
certain areas of the CC, cingulum, and less mark-
edly (scattered clusters) in hippocampus, optical 
radiations and thalamic association fibers.

Deep brain stimulation patients (group A) versus 
healthy controls (group C)
Intervened patients (group A) did not show tracts 
with significantly higher FA. Conversely, we found 
a significantly greater FA/ in healthy controls in 
some fibers of the CC (major forceps), cingulum, in 
the right SLF and in right IFOF (Fig. 2).

Patients with Parkinson’s disease (group B) vs 
healthy controls (group C)
We found a significantly higher FA in group B in 
the left IFOF, and bilateral SLF. Conversely, signifi-
cantly higher FA was found in healthy controls in 
the fibers of the CC and in the fibers of the right 
cingulum (Fig. 3).

Comparison of density, FA and length of the CT 
were compared in the BrainLab workstation, be-
tween operated and non-operated PD patients FA 
and density were significantly higher in DBS pa-
tients, whereas there were no differences in the 
length of the tract between both groups. We have 
summarized the results for a better understanding 
in the tables III and IV.

Discussion

Previous DTI studies have shown differences in FA 

Figure 2. Results of the comparison between operated PD patients and healthy controls showing signifi-
cantly elevated fractional anisotropy values in healthy controls. a) and b) In red, a representation of the 
statistically significant tracts: Corpus callosum, cingulum, right superior longitudinal fasciculus and right 
inferior fronto-occipital fasciculus. c) 3D image of the obtained results.
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b

c

Figure 1. Results of the tract-based spatial statistics analysis showing clusters of voxels with signifi-
cantly elevated fractional anisotropy in the operated patients. a) and c) In green, analyzed tracts; in 
red, global representations of statistically significant tracts. b) and c) Corticospinal tract. e) and f) right 
superior longitudinal tract.
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and MD in brain white matter tracts between PD 
patients and healthy subjects [19]; however, we 
aimed to analyze changes that might be attributable 
to the effect of DBS. To our knowledge, this is the 
first study assessing DTI of FA changes in the entire 
brain in PD patients treated with DBS.

Our voxelwise analysis by TBSS found signifi-
cantly greater FA in the CT of DBS patients, as 
compared with non-operated PD patients, as well 
as in the anterior thalamic radiations, CC, bilateral 
SLF and right IFOF. Differences in AF and number 
of fibers in the CT were confirmed by individually 
tracing the CT in the surgical and conservative 
treatment groups in our workstation. When com-
pared with healthy subjects, DBS patients’ FA was 
significantly lower in CC, cingulum, right SLF and 

right IFOF. On the other hand, the group of PD pa-
tients under conservative treatment, showed high-
er FA than DBS patients in certain areas of CC, cin-
gulum, hippocampus, optic radiations and thalamic 
association fibers, whereas no areas of higher FA 
were found in DBS PD patients, in relation with 
healthy subjects. 

Previously reported series, have shown that ef-
fective STN stimulation results in changes in the 
regional cerebral blood flow of primary motor cor-
tex (M1), lateral premotor cortex (PMC), and sup-
plementary motor area (SMA) [5,20,21]. In a very 
recent study, Hui-Min Chen et al [22] investigated 
how STN-DBS modulated the brain network using 
PET/ fMRI dataset. They found that STN-DBS re-
duced brain activity in the bilateral caudal SMA 

Table I. Main clinical characterisitics or our series of patients with Parkinson’s disease that have undergone deep brain stimulation of the subtalamic nucleus.

Age Gender
Predominant 

symptoms
Disease 
duration 

follow-up  
since surgery 

(years)

Medication  
(mg/day)

Preoperatory 
H and  
Y ON

Preoepratory 
Schwab-

England Pre ON

Preoperatory 
UPRDS  

OFF

Preoepratory 
UPRDS  

ON

Postoperatory 
H and Y

Postoperatory 
Schwab-

England Post

Improvement 
S-E

UPRDS at 
6 months 

FU OFF 
medicadion

UPDRS at 
6 months 

FU ON 
medication

UPRDS 1 
year FU OFF 
medication

UPRDS 1 
year FU ON 
medication

1 70 Female Rigidity 25 4

Levodopa-carbidopa-
entacapone 575. 
Pramipexole: 0.7, 
Quetiapine: 25. 

2 40 46 8 2 90 50 14 10 14 9

2 68 Female Tremor 18 3.5

Levodopa/carbidopa-
entacapone 400, 
Rasagiline 1, 
Amantadine 100, 
Pramipexole 2,8. 

2 60 59 19 2 90 30 18 16 21 14

3 66 Male Bradykinesia 10 3.5
Levodopa/carbidopa 
1,750, Melatonine 2, 
Trazodone 150

2 60 43 24 2 90 30 11 9 11 5

4 73 Male Rigidity 23 8.

Rivastigmine 13.3, 
Mantinex 20. 
dutasteride 0.5. 
Levodopa/carbidopa 
600 mg Quetiapine 25

2 30 41 11 2 70 40 31 21 31 22

5 67 Male
Rigidity, 
tremor

22 6
Rolpryna 2, 
Safinamide 50

2 30 26 17 2 90 60 25 18 27 19

6 69 Female Rigidity 7 1

Safinamide 100, 
Clonacepam 0.5, 
Propanolol 40, 
levodopa/carbidopa 75

2 30 42 11 2 70 40 16 12 16 12

7 53 Male
Rigidity, 
tremor

9 3.5
Rasagiline 1 
-Levodopa/carbidopa/
entacapone 500

2 40 39 3 2 100 60 11 3 14 3

Mean 66.6     20 3.7   2.0 41.4 42.3 13.3 2.0 85.7 44.3 18.0 12.7 19.1 12.0

SD 6     7 2.5   0.0 13.5 9.8 7.1 0.0 11.3 12.7 7.5 6.1 7.5 7.0
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and left M1 areas at rest [23]. Moreover, increased 
activation tends to be seen in the vicinity of the 
electrode and the surrounding midbrain, together 
with increased activation in the motor thalamus 
[24]. These findings support our results of signifi-
cant improvement in the FA of both corticospinal 
tracts in operated patients. 

The critical involvement of the motor cortex in 
PD pathophysiology, as our results suggest, has 
been demonstrated as well by electrophysiological 
studies. Both levodopa and STN-DBS have shown 
to normalize cortical beta oscillations, in associ-
ation with an improvement in motor function 
[25,26]. Our results agree with these studies, as we 
have found a higher FA of the CT of operated pa-
tients, with respect to the non-operated group, 

which might be interpreted as a reinforcement in 
the CT connectivity. 

The effects of STN-DBS on cognitive functions 
and psychiatric side effects may well relate to 
stimulation effects on these non-motor subdo-
mains [27]. SPECT, PET and functional MRI stud-
ies have also shown changes in the dorsolateral pre-
frontal cortex (DLPFC) and anterior cingulate cor-
tex (ACC), which may be in relation with some of 
the differences in FA we have obtained among our 
three groups, in limbic areas such as cingulum and 
hippocampus [23]. Impairment of verbal fluency is 
reported in patients that have undergone DBS for 
PD [28]. In PD, STN stimulations on rCBF while 
performing verbal fluency tasks have been also as-
sociated to impairment of left sided fronto-tem-
poral network [28-30], thus highlighting in surgi-
cally treated PD patients the importance of dys-
function in prefrontal rather than temporal areas. 
The worsening of verbal fluency after STN-DBS has 
been associated to perfusion reductions in the left 
dorsolateral prefrontal cortex, anterior cingulate 
cortex and ventral caudate nucleus (p < 0.001) [31]. 
Since ECD-SPECT is a suitable tracer to measure 
brain function in patients with parkinsonism [32], 
it is believed that these results are expression of 
functional modifications induced by long-term 

Figure 3. Results of comparison between non-operated PD patients and healthy controls, showing clus-
ters of voxels with significantly elevated fractional anisotropy values in PD patients. a) 3D image; b) 
longitudinal fascicles upper left; c) longitudinal fascicles lower left; d) left fronto-occipital fascicle.

a

c

b

d

Table I. Main clinical characterisitics or our series of patients with Parkinson’s disease that have undergone deep brain stimulation of the subtalamic nucleus.

Age Gender
Predominant 

symptoms
Disease 
duration 

follow-up  
since surgery 

(years)

Medication  
(mg/day)

Preoperatory 
H and  
Y ON

Preoepratory 
Schwab-

England Pre ON

Preoperatory 
UPRDS  

OFF

Preoepratory 
UPRDS  

ON

Postoperatory 
H and Y

Postoperatory 
Schwab-

England Post

Improvement 
S-E

UPRDS at 
6 months 

FU OFF 
medicadion

UPDRS at 
6 months 

FU ON 
medication

UPRDS 1 
year FU OFF 
medication

UPRDS 1 
year FU ON 
medication

1 70 Female Rigidity 25 4

Levodopa-carbidopa-
entacapone 575. 
Pramipexole: 0.7, 
Quetiapine: 25. 

2 40 46 8 2 90 50 14 10 14 9

2 68 Female Tremor 18 3.5

Levodopa/carbidopa-
entacapone 400, 
Rasagiline 1, 
Amantadine 100, 
Pramipexole 2,8. 

2 60 59 19 2 90 30 18 16 21 14

3 66 Male Bradykinesia 10 3.5
Levodopa/carbidopa 
1,750, Melatonine 2, 
Trazodone 150

2 60 43 24 2 90 30 11 9 11 5

4 73 Male Rigidity 23 8.

Rivastigmine 13.3, 
Mantinex 20. 
dutasteride 0.5. 
Levodopa/carbidopa 
600 mg Quetiapine 25

2 30 41 11 2 70 40 31 21 31 22

5 67 Male
Rigidity, 
tremor

22 6
Rolpryna 2, 
Safinamide 50

2 30 26 17 2 90 60 25 18 27 19

6 69 Female Rigidity 7 1

Safinamide 100, 
Clonacepam 0.5, 
Propanolol 40, 
levodopa/carbidopa 75

2 30 42 11 2 70 40 16 12 16 12

7 53 Male
Rigidity, 
tremor

9 3.5
Rasagiline 1 
-Levodopa/carbidopa/
entacapone 500

2 40 39 3 2 100 60 11 3 14 3

Mean 66.6     20 3.7   2.0 41.4 42.3 13.3 2.0 85.7 44.3 18.0 12.7 19.1 12.0

SD 6     7 2.5   0.0 13.5 9.8 7.1 0.0 11.3 12.7 7.5 6.1 7.5 7.0
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STN-DBS in cortical and subcortical regions en-
gaged in motor and cognitive neural circuitries 
[33,34]. 

The SLFis involved in language processing and 
visual coordination, whereas the superior and infe-
rior FOF are involved in language processing (in 
relation with the semantic component, the mean-
ing of the things that we hear, read, or say) [35]. We 
observe a higher FA in these tracts in operated ver-
sus non-operated PD patients, and a lower FA in 
DBS patients compared with healthy controls. 
These observations, together with changes in CC 
and cingulum, might be related with the benefit in 
working memory and language alterations experi-
enced by DBS patients.

Vanegas-Arroyave et al aimed to identify the 
cortical and subcortical regions most frequently as-
sociated with clinically effective contacts in pa-
tients with PD treated with DBS, which were the 
brainstem, thalamus, STN and the superior frontal 
gyrus [36]. In another interesting study, Acolla et al, 
conducted whole brain probabilistic tractography 
seeding from DBS contacts implanted in PD pa-
tients, in order to identify the inner organization of 
the STN in terms of motor and non-motor areas. 
The authors described projections predominantly 
to motor and premotor cortical regions additional 
to connections to limbic and associative areas. 
More ventral subthalamic areas showed predomin-
ant connectivity to medial temporal regions includ-

Table II. Main clinical features of the group of our non-operated patients with Parkinson’s disease. 

Age Gender
Predominant 

symptoms
Disease 
duration 

Follow-up 
(years)

Medication (mg/day)
 H and  
Y OFF

 H and  
Y ON

Schwab- 
England ON

UPRDS 
OFF

UPRDS  
ON

1 75 Female Rigidity 15 9 Levodopa/carbidopa/entacapone: 1150 3 2 50 32 5

2 78 Male Rigidity 16 12
Levodopa/carbidopa/entacapone 400, 

Pramipexol 1. Levetiracetam 1000
3 2 60 47 26

3 77 Female Bradykinesia 15 7 Levodopa/benserazide 800 2 2 60 39 4

4 67 Female Rigidity 7 6 Rasagiline 1. Levodopa/benserazide 200. 2 2 30 26 16

5 74 Female Tremor, rigidity 20 8
Duodopa Pump, Levodopa/benserazide 200 

Pramipaxole 1.05 Safinamide 100
3 2 30 44 11

6 71 Male Rgidity 8 12
Ropinirol Prolib: 14, Levodopa/carbidopa/

entacapone 600, Safinamide 100
2,5 2 30 43 16

7 72 Male Tremor 10 6
Safinamide 100, Levodopa/carbidopa/

entacapone 800, Levodopa/carbidopa 600, 
Rivastigmine 3

3 2 40 39 12

8 77 Male Rigidity 14 4 Levodopa/carbidopa 700, Rasagiline 1 4 2 40 45 12

9 72 Male
Tremor, 

bradikynesia
20 5

Safinamide 100, Levodopa/carbidopa/
entacapone 800,Rasagiline 2

3 2 60 27 17

10 63 Male Rgidity 15 10 Rasagiline 1. Levodopa/benserazide 200. 3 2 60 40 13

11 56 Male Bradikinesia 10 6 Levodopa/carbidopa/entacapone: 1150 4 2 50 45 23

12 72 Male Tremor 20 4
Levodopa/carbidopa/entacapone 800, 

Safinamide 100,Propanolol,10 Ropirinol 20, 
3 2 40 41 10

Mean 71.2 14.2 7.4 3.0 2.0 45.8 39.0 13.8

SD 6.4 4.6 2.8 0.6 0.0 12.4 7.0 6.4

H and Y: Hoehn and Yarh; UPDRS: Unified Parkinson’s Disease Rating Scale.
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ing amygdala and hippocampus [37]. In our study, 
we found a greater FA in operated patients in sever-
al tracts, which have multiple connections with the 
frontal lobe, both in their motor and prefrontal 
areas. This might suggest that patients who have 
obtained a good therapeutic outcome, had an in-
creased FA in those areas. 

It is noticeable that patients under conservative 
treatment showed greater FA in the left FOF and 
bilateral SLF than healthy controls. A correlation 
between a higher FA in certain tracts and loss of 
function has been previously reported in PD and 
other diseases. In William’s Syndrome (WS), for 
example, visuospatial deficits have been associated 
with a significant increase in the FA of the right 
SLF, with some reports suggesting that abnormal 
increases in FA may reliably predict anomalous 
cognitive function in WS [38]. Similar observa-
tions have bee described in other neurological ill-
nesses and in Parkinson’s disease [39-42]. Although 
the cellular mechanisms underlying the increased 
FA in relation with function decline remain un-
known, increased FA potentially reflects compen-
satory mechanisms [42] and poor cognitive func-
tion [43].

Finally, our study has several limitations: First, it 
is a retrospective study with a small patient popula-
tion, which prevents establishing correlations be-
tween the observed differences in FA and the clini-
cal effects of stimulation. Secondly, the acquisition 
protocol used by ADNI differed from that per-
formed in our institution, which might affect the 
results. Finally, we are not comparing the same 
group of subjects, pre and postoperatively. To mini-
mize biases, the selection of the groups was carried 
out conscientiously to bring us closer to homo-
geneity, and we used an age and disease severity 
matched conservative control group. Despite that, 
there is certain heterogeneity between subjects, as 
PD is a multisymptomatic disease.

Conclusions

In our series, patients with Parkinson’s treated 
with bilateral STN-DBS showed a significantly 
higher FA, compared to patients who were not 
intervened, in motor and non-motor areas of cere-
bral white matter, which could be related to the 
DBS therapeutic and adverse effects observed with 
DBS. Collectively, remotely modulated areas (M1, 
SMA, limbic and associate tracts) and those locally 
affected might constitute an effective STN-DBS 
network.

Table IV. Analysis of the number of fibers and mean fractional anisotropy FA of the corticospinal tract 
(CST) performed in our series of patients with Parkinson’s disease (PD).

DBS
Fibers 

Right CT
FA

Right CT
Length

Right CT
Fibers 
Left CT 

FA 
Left CT

Length
Left CT

1 12355 0.30 130 6473 0.41 135

2 4271 0.44 137 1548 0.40 149

3 4753 0.47 120 4603 0.46 129

4 4246 0.48 126 3423 0.47 127

5 3517 0.44 135 4228 0.48 126

PD
Fibers 

Right CT
FA 

Right CT
Length

Right CT
Fibers 
Left CT

FA 
Left CT

Length
Left CT

1 16 0.20 172 21 0.21 168

2 2205 0.32 124 2085 0.33 122

3 2724 0.38 123 3745 0.27 130

4 2541 0.28 128 2511 0.27 120

5 873 0.3 128 1899 0.39 128

p value 0.0426 0.0178 0.5967 0.0807 0.0025 0.9683

Table III. Comparative table showing the analyzed results of the three groups of our study: tracts that 
have shown statistically significant increases in the anisotropy fraction, resulting from the comparison 
between the two confluent groups.

DBS patients Parkinson´s disease  
non-operated patients

Healthy controls

DBS 
patients

–

Corpus callosum
Cingulum
Hippocampus (scattered 

cluster)
Optical radiations
Thalamic association fibers

Corpus callosum (major forceps)
Cingulum
Right superior longitudinal 

fasciculus.
Right inferior fronto-occipital 

fasciculus

PD non-
operated 
patients

Right Corticoespinal tract
Left Corticoespinal tract
Anterior thalamic radiations
Corpus callosum (right minor 

forceps)
Right superior longitudinal 

fasciculus.
Left superior longitudinal 

fasciculus
Right inferior fronto-occipital 

fasciculus

–

Corpus callosum
Cingulum

Healthy 
controls

None Left fronto-occipital 
fasciculus

Right superior longitudinal 
fasciculus

Left superior longitudinal 
fasciculus

–
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Estimulación cerebral profunda en la enfermedad de Parkinson: análisis de la anisotropía fraccional 
cerebral en pacientes intervenidos mediante estimulación cerebral profunda

Introducción. La estimulación cerebral profunda (ECP) del núcleo subtalámico actualmente es una opción terapéutica ba-
sada en la evidencia para los síntomas motores en pacientes con enfermedad de Parkinson (EP), aunque otros síntomas 
no motores pueden verse afectados por la estimulación. 

Objetivo. Nuestro objetivo es evaluar los cambios globales en la conectividad de la red estructural a gran escala en pa-
cientes con EP que han obtenido un beneficio de la ECP subtalámica. 

Sujetos y métodos. Estudio retrospectivo de 31 sujetos: siete pacientes con EP con ECP subtalámica (grupo A), 12 pacien-
tes con EP no operados de la misma edad y sexo (B) y 12 controles sanos (C). Todos los sujetos se habían sometido a una 
resonancia magnética cerebral de 1,5 T con imagen del tensor de la difusión. Las imágenes DICOM se procesaron con el 
software FSL5.0 y la herramienta estadística espacial basada en el tracto. 

Resultados. El grupo de estudio estuvo compuesto por 23 hombres y ocho mujeres. No se encontraron diferencias esta-
dísticamente significativas en edad, sexo, puntuación en la escala de Hoehn y Yahr y seguimiento medio entre el grupo A 
y B, y en edad y sexo entre los grupos A y C. El análisis estadístico reveló diferencias en la anisotropía fraccional de los dife-
rentes grupos en ciertas áreas: tracto corticoespinal bilateral, radiaciones talámicas anteriores, fascículo frontooccipital 
bilateral, ambos fascículos longitudinales superiores y fascículo longitudinal inferior izquierdo. 

Conclusiones. En nuestra serie, los pacientes con EP tratados con ECP subtalámica bilateral mostraron una anisotropía 
fraccional significativamente mayor en áreas extensas de la sustancia blanca cerebral, lo que sugiere que la neuromodu-
lación produce cambios de conectividad en diferentes redes neuronales.

Palabras clave. Cirugía de trastornos del movimiento. Conectividad. Enfermedad de Parkinson. Estimulación cerebral pro-
funda. Redes neuronales. Tractografía. 
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