Original

Epidemiology of stroke in the last decade: a systematic review

F. Purroy, N. Montalà [REV NEUROL 2021;73:321-336] PMID: 34676530 DOI: https://doi.org/10.33588/rn.7309.2021138 OPEN ACCESS
Volumen 73 | Number 09 | Nº of views of the article 44.539 | Nº of PDF downloads 837 | Article publication date 01/11/2021
Icono-PDF-OFF Download PDF Castellano Icono-PDF-OFF Download PDF English Citation Search in PubMed
Share in: Facebook Twitter
Go to another issue
ABSTRACT Artículo en español English version
INTRODUCTION Cerebrovascular disease (CVD) is responsible for the majority of disability-adjusted life years and is a leading cause of mortality. This impact justifies having up-to-date data on its incidence.

PATIENTS AND METHODS We conducted a systematic review of the studies published since 2010 that provided information on the crude incidence rate (CIR) and adjusted incidence rate of CVD during the second decade of the 21st century.

RESULTS Thirty-five articles were identified. Twenty-eight provided information on the overall incidence of CVD, 19 on the incidence of ischaemic stroke (IS), 19 on the incidence of haemorrhagic stroke (HS) and 10 on the incidence of subarachnoid haemorrhage (SAH). The incidence was heterogeneous across countries. Thus, the median CIR was 149.5 – confidence interval 95% (CI 95%): 122-256 – cases per 100,000 inhabitants for CVD; 155 (CI 95%: 95.6-246.12) for SI; 29 (CI 95%: 19-43) for HS; and 6.5 (CI 95%: 4.8-13.5) for SAH. The incidence for both CVD and IS and HS was higher in men than in women in most studies, with the exception of some Asian, European and North American studies. The majority of studies showed a decreasing or stabilising trend in incidence, with the exception of studies conducted in China, Singapore, France and Australia. CONCLUSION. There are few studies that analyse the incidence of CVD and even fewer that analyse its evolution. The overall median remains high, although the figures are heterogeneous across studies. Worldwide the trend is towards its decrease, and there are geographical areas, especially in Asia, with an alarming upward trend.
KeywordsCerebrovascular diseaseHaemorrhagic strokeIncidenceIschaemic strokeSubarachnoid haemorrhageSystematic review CategoriesCalidad, Gestión y Organización AsistencialPatología vascular
FULL TEXT Artículo en español English version

Introduction


Cerebrovascular disease (CVD) is responsible for the majority of disability-adjusted life years and is a leading cause of mortality [1]. In 2016, CVD was directly responsible for approximately 5.5 million deaths and the loss of 116.4 million years of quality of life [1], which had a significant impact on the economy [2]. Advances in secondary prevention and the reduction in premorbid risk factors [3,4], such as smoking and high blood pressure [5], could lead to a decrease in the incidence of CVD. However, the rise in life expectancy in these countries and the increase in obesity [6] and diabetes mellitus [7] could reverse this trend. Data from population-based observational studies, such as that conducted in Oxfordshire, estimate that there will be a 13% increase in the number of first strokes in the UK by 2045 despite a drop in the incidence between the last decade of the 20th century and the first of the 21st [8]. In addition, the development of the stroke code and the advent of thrombectomy have reduced the mortality of patients with ischaemic stroke, with the consequent increase in the prevalence of stroke [9]. During the early 21st century, the incidence of haemorrhagic stroke has probably risen due to the increase in anti-thrombotic treatment in elder people with atrial fibrillation. In Latin America, the incidence of stroke is significant, as shown in the document resulting from the first Latin American ministerial meeting on stroke, held in Gramado, Brazil [10]. According to this document, 600,000 new cases of the disease were registered in 2017 in the 13 Latin American countries participating in the meeting. In the Latin American and Caribbean area, the absolute number of new stroke cases increased significantly over the period between 1990 and 2019. The figure rose from 467,634 cases in 1990 to 708,355 cases in 2019 [11].

The impact of CVD justifies the need for up-to-date data on the incidence of the disease. Such information makes it easier to design primary, secondary and tertiary prevention strategies aimed at reducing its impact. We conducted a systematic review of the incidence of CVD along with its trend between 2010 and 2020.
 

Patients and methods


A systematic search was carried out following the PRISMA recommendations. The search was performed in PubMed to look for articles of interest using the terms ‘stroke’ and ‘incidence’ and was limited to the period from 2010 to the present, including the last article from December 2020. Articles not written in English or Spanish were excluded. The abstracts of all the articles identified in the aforementioned search were reviewed by the two authors (F.P. and N.M.). Both authors then reviewed the full text of the selected articles. Population-based studies were included in the review if they: a) followed the definition of stroke according to the World Health Organisation diagnostic criteria; b) comprised incident cases, including first strokes; c) included cases after 31 December 2009; and d) established a well-defined study population. We excluded studies that pooled data from more than 10 years without being able to obtain individual data from time periods after 2005. Crude incidence rate (CIR) and adjusted incidence rate (AIR) data were collected for ischaemic stroke (IS), haemorrhagic stroke (HS), subarachnoid haemorrhage (SAH) and all forms of stroke.

Statistical analysis


The median CIR for CVD and for each subtype of stroke, and the percentage difference in CIR between men and women were determined. The results were presented with a 95% confidence interval (CI 95%). Differences between continents and/or regions were analysed using non-parametric tests. Values of p < 0.05 were considered statistically significant. SPSS version 24 was used for the statistical analysis. In addition, Graph Pad Prism version 8 and Keynote software were used for the graphical presentation of the results.
 

Results


A total of 54,668 articles were identified. After an initial selection, 602 of them were registered. Then, after checking in the abstract that they were studies on the incidence of CVD, the full text of 203 studies was examined. Finally, 35 articles were included, 28 of which provided information on the overall incidence of CVD, 19 on IS incidence, 19 on HS incidence and 10 on SAH incidence.

Cerebrovascular disease incidence


As shown in Table I and Figure 1a, the CIR of CVD ranged from 60 cases per 100,000 inhabitants in Saudi Arabia [13] to 786 in Cuba, in a study that only included people aged ≥ 65 years [20]; the median was 149.5 (CI 95%: 122-256). The continent with the most studies was Europe with ten, followed by Asia with nine. Interestingly, there was one Spanish study [23] and three conducted in Latin America [14,16,20]. The Caribbean region had the highest CIR –median: 466.4 (CI 95%: 146-786.2)–, followed by Europe –median: 199.5 (CI 95%: 198-256)–; p = 0.088. Studies conducted in African countries had the lowest CIR –median: 95.5 (CI 95%: 60.7-130.3)–. Twenty-four studies calculated the AIR: 7 for the standardised European population, 11 for the global population and 6 for the Segi standard world population. In terms of the AIR, European countries had higher incidences, although the differences were not statistically significant. Overall, the CIR was lower among women, with a median of less than 15.4% (CI 95%: 0.5-28.2%) (Fig. 2a). Studies in certain countries such as China [17], France [24,25], the United States [22] and Portugal [36] observed an inverse relationship, with a higher CIR in women. Eleven studies provided information on the evolution of the CIR. Thus, as shown in Figure 3a, studies from China [17-19], Australia [15] and France [24] showed an increasing trend in the CIR. In contrast, studies in Denmark [21], the United Kingdom [37] and the United States [40] reflected a downward trend.

 

Table I. Studies providing information on the incidence of cerebrovascular disease.
 
Study

Period of analysis 

Age at inclusion

Sample of cases

Raw incidence of men

Raw incidence of women

Total raw incidence

Standard population

Standardised incidence of men

Standardised incidence of women

Total standardised incidence


Algeria

Bezzaoucha et al, 2020 [12]

2018

≥ 25 years old

828

143.6

116.9

130.3





Argentina


Bahit et al, 2016 [14]

2013-2015

All

334



127.9
(114.5-142.4)

Segi



114.7
(102.4-128.1)


Australia

Anderlini et al, 2020 [15]

2002

All

3.193

89 (85-93)

86 (82-90)

87
(84-90)

WHO

65 (62-68)

51 (48-53)

58 (56-60)

2010

All

4.534

111 (106-115)

95 (91-99)

103
(100-106)

WHO

75 (72-78)

54 (52-56)

64 (62-66)

2015

All

5.153

117 (113-121)

99 (95-103)

108
(105-111)

WHO

79 (76-82)

57 (54-59)

67 (66-69)


Brazil

Cabral et al, 2016 [16]

1995

All

320

96.4 (83.2-111.6)

70 (59.4-83.8)

83.5
(74.6-93.1)

Segi

183.5 (158-211.9)

111.3
(93.3-131.7)

143.7
(128.4-160.3)

2005-2006

All

759

80.2 (72.5-88.5)

73.5 (66.2-81.4)

76.9
(71.6-82.6)

Segi

134.1 (121.2-148.1)

85.8 (77.2-95)

105.4 (98-113.2)

2012-2013

All

922

88.6 (80.8-97)

83.3 (75.8-91.4)

85.9
(80.4-91.6)

Segi

107.1 (97.7-117.2)

77.2 (70.2-84.6)

90.9 (85.1-96.9)


China 

Wang et al 2016 [17]

1992

All


118

77.9

98





2004

All


250.6

196.4

220.1





2014

All


280

308.8

297.4






Jiang et al, 2016 [18]

1992

All


154.5

103.4

128.6





2000

All


293.1

200.3

245.3





2004

All


275.8

157.5

214.8





2010

All


378

249.7

317






Sun et al, 2014 [19]

2005

All

231

259.6
(215.4-303.8)

196.2
(157.6-234.8)

228
(198.6-254.5)

Segi

178.3 (141.6-215)

143 (110-176)

159.1
(134.6-183.6)

2008

All

254

290
(243.3-336.7)

211.1 (171-251.2)

250.8
(220-281.6)

Segi

192.2
(154.2-230.2)

148.4
(114.7-182.1)

170
(144.6-195.4)

2011

All

274

309.3
(261.3-357.3)

222.9
(182.2-263.6)

266.1
(234-297.6)

Segi

199.6 (161-238.2)

164.4
(129.4-199.4)

 


Cuba

Libre-Guerra et al, 2015 [20]

2008-2011

≥ 65 years old

82

1.080
(790-1.480)

590 (440-790)

786.2
(672.3-906.4),






Denmark

Yafasoa et al, 2019 [21]

1996-1998

≥ 18 years old

30.521



270
(265-276)

Danish population
in 2016




2002-2004

≥ 18 years old

36.127



325
(320-331)

Danish population
in 2016




2014-2016

≥ 18 years old

29.941



199 (195-202)

Danish population in 2016





England

Ramadan et al, 2018 [29]

2013-2014

≥ 18 years old

541



198

WHO



166


France

Grimaud et al, 2019 [24]

2008-2013

≥ 25 years old

3.854

254.6

260

256

European population in 2013



267 (259-276)


Meirhaeghe et al, 2018 [25]

2008-2015

≥ 35 years old

1.917

257
(240-275)

270 (254-286)

264 (252-276)

Standardised European population; WHO

264 (246-282); 231 (215-247)

174 (162-186); 145 (135-156)

214 (204-224); 184 (174-193)


Greece

Tsivgoulis et al, 2018 [26]

2010-2012

≥ 18 years old

703

618.7 (555.8-717)

554.8
(495.1-614.5)

586.8
(543.4–630.2)

Standardised European population; WHO; Segi

618.7 (555.8-681.7); 650.8 (584.6-717); 364.1 (327.1-401.2); 335.7 (301.6-369.9)

554.8 (495.1-614.5); 431.6 (385.1-478); 212.4 (189.6-235.3); 185.6 (165.7-205.6)

534.1
(494.6–573.6); 285 (189.6–235.3); 257.9 (238.8-277)


Stranjalis et al, 2014 [27]

2010-2011

All

197

262.9
(214-312)

193.9 (153-235)

227.9 (196–260)

Standardised European population

148 (119-181)

86 (65-110)

117 (99-136)

All

197




WHO



86 (73-101)

All

197




Segi


..

74 (62-88)


India

Pandian et al, 2016 [28]

2010-2013

≥ 18 years old

1.491

162

115

140 (133-147)

WHO

151 (141-161)

106 (97-115)

130 (123-137)


Iran

Bahomar et al, 2017 [30]

2003

All

2.556

152.6
(128.9-175.6)

167.4
(143.7-191.1)

159.8
(135.8-183.8)

Segi

298 (268.5-327.6)

167.4
(143.7-191.1)

229.8
(201.5-258.2)

2009

All

1.533

86.8
(69.5-104.1)

77.8 (61.4-94.1)

86.4
(68.7-104.1)

Segi

138.2 (117.2-159.1)

101.7
(83.4-120.1)

111.3 (91.4-131.2)

2013

All

2.283

125 (104.3-145.7)

118.9 (98.7-139.1)

122 (101-143.9)

Segi

187.3 (162.7-212)

138.8
(117.2-160.4)

142.9
(120.2-165.6)


Japan

Iguchi et al, 2013 [32]

2009-2010

All

758



159.8
(148.4-171.1)

Segi



60.7 (45.4-75.9)

2009-2010

All

758




Standardised European population



91.2 (72.5-109.9)


Malaysia

Neelamegam et al, 2013 [33]

2010-2011

All

174

73.6

60.3

67.4






Martinique

Olindo et al, 2014 [31]

1998-1999

All

580

165.8 (146-186)

154.9 (138-182)

160.1 (149-172)

WHO

122 (107-137)

104 (92-116)

111 (102-120)

2011-2012

All

544

171.2 (152-190)

125.7 (110-141)

146.6
(134-159)

WHO

90 (79-101)

69 (60-78)

77 (70-84)


New Zealand

Krishnamurthi et al, 2018 [35]

2011-2012

≥ 15 years old

1643

148 (137-158)

146 (136-156)

147 (140-154)

WHO

129 (120-138)

115 (107-123)

122 (116-128)


Nigeria

Okon et al, 2015 [34]

2010-2011

All

298

75 (23-145)

46.4 (13.8-136.7)

60.7
(298- 491)

WHO



60.7


Portugal

Correia et al, 2017 [36]

1998-2000

All

261

235 (200-270)

244
(260-328)

269
(244-293)

Standardised European population

179 (148-209)

167 (141-193)

173 (153-192)

2009-2011

All

203

196 (168-225)

200 (173-226)

198 (179-217)

Standardised European population

160 (134-185

107 (88-127)

130 (114-146)


Saudi Arabia

Al Banna et al, 2015 [13]

2011

≥ 16 years old

521



60






Spain

Vena et al, 2020 [23]

2010

All

888

234 (214-254)

169 (151-186)

202 (189-215)

WHO

131 (119-143)

74 (65-83)

100 (93-108)

2011

All

854

226 (207-246)

159 (142-175)

193 (180-206)

WHO

130 (118-142)

68 (60-77)

98 (91-105)

2012

All

852

230 (211-250)

153 (137-170)

192 (179-205)

WHO

127 (116-139)

62 (54-70)

93 (86-100)

2013

All

929

251 (230-271)

169.5 (152-187)

211 (197-224)

WHO

141 (129-154)

70 (61-79)

104 (96-111)

2014

All

874

244 (223-264)

154 (138-171)

200 (186-213)

WHO

137 (125-149)

62 (54-70)

98 (90-105)


Sweden

Aked et al, 2018 [38]

2001-2002

≥ 15 years old

456

220 (193-249)

169 (146-195)

194 (176-213)

Standardised European population

321 (283-363)

185 (160-213)

253 (230-277)

2015-2016

≥ 15 years old

413

162 (141-185)

137 (118-158)

149
(135-164)

Standardised European population

199 (174-227)

136 (117-157)

167 (151-184)


United Kingdom

Wang et al, 2013 [37]

1995-1998

All

1.303

277.3
(254.4-302.2)

217.5
(201.2-234.9)

247
(233.5-261.2)





1999-2002

All

1.072

235.5
(214.9-258)

186.6
(171.1-203.3)

211.7
(199-225.1)





2003-2006

All

994

207.9
(189.8-227.7)

145.5
(132.3-159.7)

175.3
(164.3-186.8)





2007-2010

All

876

158 (142.4-175.1)

138.6
(125.8-152.4)

149.5
(139.4-160.1)






United States

Madsen et al, 2020 [22]

1993-1994

≥ 20 years old

1.916

263 (246-281)

217 (205-230)






1999

≥ 20 years old

1.995

269 (251-286)

241 (228-254)






2005

≥ 20 years old

1.858

228 (214-244)

189 (178-201)






2010

≥ 20 years old

1.941

192 (179-205)

198 (187-210)







Vietnam

Yamanashi et al, 2016 [39]

2009-2011

All

190



90.2
(81.1-100.2)

WHO

104.9
(90.8-120.5)

77 (65.4-90.1)

115.7 (95.9-139.1)


WHO: standard population of the World Health Organisation.

 

Figure 1. Representation of the crude incidence rates: a) Cerebrovascular disease; b) Ischaemic stroke; c) Haemorrhagic stroke; d) Subarachnoid haemorrhage.






 

Figure 2. Representation of the crude incidence rates by gender: a) Cerebrovascular disease; b) Ischaemic stroke; c) Haemorrhagic stroke; d) Subarachnoid haemorrhage.






 

Figure 3. Time trend of the crude incidence rate: a) Cerebrovascular disease; b) Ischaemic stroke; c) Haemorrhagic stroke; d) Subarachnoid haemorrhage.






 

Incidence of ischaemic strokes


As can be seen in Table II, 19 studies provided information on the CIR of ischaemic strokes. The continent where most studies had been conducted was Asia, with 11. The CIR ranged from 31 cases per 100,000 inhabitants in Nigeria [34] to 474 cases per 100,000 inhabitants in Greece [26]. The median CIR across all the studies was 155 (CI 95%: 95.6-246.12) cases per 100,000 inhabitants. European studies had the highest CIR: 314.5 (CI 95%: 216-453) (Fig. 1b). As in CVD (Fig. 2b), women had a lower CIR than men and a lower median: 26.7% (CI 95%: –4.8-35.6). Two Spanish studies [23,42] and one South American study [14] were identified. In the Spanish study conducted by Vena et al, which included subjects of all ages, the CIR during the period 2010-2014 ranged from 171 (CI 95%: 159-184) to 191 (CI 95%: 178-204) [23], while in the study by Satue et al, which included subjects > 60 years of age, the CIR rose to 453 (CI 95%: 408-504) [42]. In both cases, the CIR was higher in men. The CIR was significantly lower in the Argentinian study conducted by Bahit et al (96.1 [CI 95%: 84.6-116.9]) [14].

 

Table II. Studies providing information on the incidence of ischaemic strokes.
 
Study

Period of analysis 

Age at inclusion

Sample of cases

Raw incidence of men

Raw incidence of women

Total raw incidence

Standardised population

Standardised incidence of men

Standardised incidence of women

Total standardised incidence


Argentina

Bahit et al 2016 [14]

2013-2015

All

251



96.1 (84.6-116.9)

Segi



85.6 (75-97.1)


China

Wang et al 2016 [17]

1992

All


62.6

50.2

56.4





2004

All


174.7

132.6

150.6





2014

All


208.2

266

238.8






Jiang et al 2016 [18]

1988

All


64.8

28.2

43.7





2000

All


212.1

142.3

176.2





2010

All


327.6

211

268.1






Sun et al 2014 [19]

2005

All

92



94.8 (75.8-113.8)

Segi



66.2 (50.4-82)

2008

All

104



103.7 (83.9-123.5)

Segi



69.3 (53.1-85.5)

2011

All

130



127.2 (105.4-149)

Segi



84.6 (66.8-102.4)


England

Ramadan et al 2018 [29]

2013-2014

≥ 18 years old

421



160

 





France

Meirhaeghe et al 2018 [25]

2008-2015

≥ 35 years old

1.562

209 (193-224)

222 (207-237)

216 (205-227)

       

Greece

Tsivgoulis et al 2018 [26]

2010-2012

≥ 18 years old

568

617.8 (548-688)

452.9 (399-507)

474.1 (435-513)

Standardised European population; WHO; Segi

525.6 (465.8-585.4); 282.4 (250.3-314.6); 259.3 (229.8-288.8)

342.4 (301.6-383.1); 164.4 (144.8-184); 142.3 (125.3-159.2)

425.9 (390.9-460.9); 220.5 (202.3-238.6); 198.7 (182.4-215)


India

Pandian et al 2016 [28]

2010-2013

≥ 18 years old

976



92

WHO



85 (80-90)


Iran

Bahomar et al 2017 [30]

2003

All




108.6 (88.8-128.4)

Segi



157 (133.6-180.4)

2009

All




69.1 (53.3-84.9)

Segi



89.6 (71.7-107.5)

2013

All




94.2 (75.7-112.7)

Segi



110.7 (90.7-130.7)


Japan

Iguchi et al 2013 [32]

2009-2010

All

516



108.8 (99.4-118.1)

Segi



38.4 (26.3-50.5)

2009-2010

All

516




Standardised European population

   

59.2 (44.2-74.3)


Korea

Lee et al 2020 [41]

2008


92.691



244.2





2016


83.939



199.6






New Zealand

Krishnamurthi et al 2018 [35]

2011-2012

≥ 15 years old

1.329

124 (114-133)

114 (106-123)

119 (112-125)

WHO

108 (100-116)

87 (81-95)

97 (92-103)


Nigeria

Okon et al 2015 [34]

2010-2011

All

152

38.3
(32.6-414.7)

23.6
(24.1-234.3)

30.5 (47.5-265.3)






Norway

Vangen-Lønne et al 2015 [43]

1991-1995

≥ 30 years old

98

130.1

81.5

107.9





1996-2000

≥ 30 years old

313

276.9

197.8

235.9





2001-2005

≥ 30 years old

413

376.3

273.3

331





2006-2010

≥ 30 years old

367

379.7

256.8

314.5






Singapore

Tan et al 2020 [44]

2005-2007

All

13.384

141 (138-144)

112 (109-115)

126 (124-129)





2008-2010

All

13.866

140 (137-143)

109 (106-111)

124 (122-126)





2011-2013

All

15.448

158 (155-161)

112 (110-115)

135 (133-137)





2014-2016

All

17.627

179 (176-183)

123 (120-126)

151 (148-153)






Spain

Vena et al 2020 [23]

2010

All

813

217 (198-237)

151 (135-169)

185 (172-198)

WHO

120 (108-132)

64 (56-74)

90 (83-98)

2011

All

758

200 (182-220)

142 (126-158)

171 (159-184)

WHO

114 (103-127)

60 (52.4-69)

86 (79-93)

2012

All

765

208 (190-228)

136 (121-152)

173 (161-185)

WHO

114 (104-127)

55 (47-63)

83 (76-90)

2013

All

842

229 (209-250)

152 (136-169)

191 (178-204)

WHO

128 (116-140)

60 (53-70)

92 (85-100)

2014

All

791

221 (202-241)

139 (124-156)

181 (168-194)

WHO

122 (111-135)

54 (47-63)

86 (80-94)


Satue et al 2016 [42]

2008-2011

>60 years old

343

531

392

453 (408-504)






United States

Madsen et al 2020 [22]

1993-1994

≥ 20 years old

1.693

238 (223-257)

193 (181-205)






1999

≥ 20 years old

1.750

249 (232-266)

207 (195-219)






2005

≥ 20 years old

1.653

207 (193-221)

168 (157-178)






2010

≥ 20 years old

1.665

165 (153-177)

173 (162-184)







Vietnam

Yamanashi et al 2016 [39]

2009-2011

All

38



46.7 (40.1-53.9)

WHO

52.2
(42.4-63.5)

41.5 (33.1-51.4)

60.7 (46.7-78.4)


WHO: standard population of the World Health Organisation.

 

In studies from China [17], France [25] and the United States [40], there was an inverse relationship with a higher CIR in women. Nine studies provided information on the evolution of the CIR over time (Fig. 3b). Both Chinese [17-19] and Singaporean studies [44] reflected an increase in the CIR (Fig. 3b), unlike those conducted on Korean [41] and US populations [40].

Incidence of haemorrhagic strokes


As Table III shows, 19 studies provided information on the CIR of haemorrhagic strokes, with a median CIR of 29 (CI 95%: 19-43) cases per 100,000 inhabitants. Asia and Europe were the continents with the most studies, with seven each (Fig. 1c). The Chinese study by Sun et al [19] had the highest CIR, with 122.4 cases per 100,000 inhabitants. The lowest incidence was detected in Nigeria [34], with 11 cases per 100,000 inhabitants. There were no significant differences between studies from different continents and regions (p = 0.315). The Asian and the US studies had the highest incidences (medians: 38.5 [CI 95%: 33.2-49.6] and 36 [CI 95%: 29-43], respectively). Women had a lower CIR than men (lower median: 26.5% [CI 95%: 10.338.4]) (Fig. 2c). However, three studies carried out in New Zealand [35], Italy [48] and Nigeria [34] reported higher rates in women. Only six studies provided inforrhagic strokes (Fig. 3c). Wang et al described an upward trend in the incidence in a rural area of China [17]. In contrast, in the same country, Jiang et al [18] published data on the decreasing trend in a metropolitan area, as in Korea [46] and the United States [22,47]. In Spain, Vena et al reported a stabilising trend after studying the CIR for five consecutive years, from 2010 to 2014 [23].

 

Table III. Studies providing information on the incidence of haemorrhagic strokes.
 
Study

Period of analysis 

Age at inclusion

Sample of cases

Raw incidence of men

Raw incidence of women

Total raw incidence

Standardised population

Standardised incidence of men

Standardised incidence of women

Total standardised incidence


Argentina

Bahit et al 2016 [14]

2013-2015

All

54



20.7 (15.5-27)

Segi



19.4 (14.4-25.4)


China

Wang et al 2016 [17]

1992

All


55.4

27.7

41.7





2004

All


67.8

63.8

65.8





2014

All


71.9

42.8

58.6






Jiang et al 2016 [18]

1988

All


72

37.7

51.7





2000

All


81

57.9

69.1





2010

All


50.2

30.9

40.5






Sun et al 2014 [19]

2005

All

123



124.4
(102.7-146.1)

Segi



86.7
(68.6-104.8)

2008

All

132



130.4
(108.2-152.6)

Segi



88.6
(70.3-106.9)

2011

All

125



122.4 (101-143.8)

Segi



83.8
(66.1-101.5)


England

Ramadan et al 2018 [29]

2013-2014

≥ 18 years old

70



26

 





France

Meirhaeghe et al 2018 [25]

2008-2015

≥ 35 years old

299

46 (38-53)

40 (34-46)

43 (38-47)






Germany

Palm et al 2013 [45]

2006-2010

All

152



18.7 (15.9-21.9)

Standardised European population



11.9 (10.2-14)


Greece

Tsivgoulis et al 2018 [26]

2010-2012

≥ 18 years old

83

97.8 (70-126)

60.2 (41-80)

69.3 (54-84)

Standardised European population; WHO; Segi

80.1 (57.2-102.9); 47.4 (33.8-60.9); 44.4 (31.7-57.1)

44.6 (30.1-59.2); 21.7 (14.6-28.8); 19.5 (13.2-25.9)

63.3 (49.7-76.9); 34.6 (27.2-42); 31.7 (24.9-38.5)


India

Pandian et al 2016 [28]

2010-2013

≥ 18 years old

290



27

WHO



26 (23-29)


Iran

Bahonar et al 2017 [30]

2003

All




37.3 (25.7-48.9)

Segi



53.8 (40.1-67.5)

2009

All




13.6 (6.6-20.6)

Segi



17.4 (9.5-25.3)

2013

All




15.7 (8.1-23.3)

Segi



18.3 (10.2-26.4)


Italy

Sacco et al 2016 [48]

2011-2012

All

115

17.9
(13.5-23.2)

20.6
(15.9-26.1)

19.3 (16-23)

Standardised European population

17.9
(13.5-23.2)

20.6 (15.9-26.1)

14.8 (11.7-18.4)


Japan

Iguchi et al 2013 [32]

2009-2010

All

173



36.5 (31-41.9)

Segi



16.1 (8.3-24)


Iguchi et al 2013 [32]

2009-2010

All

173




Standardised European population



23 (13.6-32.4)


Korea

Lee et al 2020 [46]

2008


18211



48





2016


16174



38.5






New Zealand

Krishnamurthi et al 2018 [35]

2011-2012

≥ 15 years old

211

18 (15-22)

19 (16-23)

19 (16-21)

 

16 (13-19)

16 (13-19)

16 (14-18)


Nigeria

Okon et al 2015 [34]

2010-2011

All

54

11.8 (15-52.3)

18 (0.3-24.9)

11 (5-80)






Spain

Vena et al 2020 [23]

2010

All

75

17 (12-23)

17 (12-24)

17 (13-21)

WHO

10 (7-15)

8.8 (6-14)

9 (7-12)

2011

All

96

26 (20-34)

17 (12-24)

22 (18-27)

WHO

16 (12-22)

8 (5-12)

12 (9-15)

2012

All

87

22 (17-30)

17 (12-23)

20 (16-24)

WHO

12 (9-17)

7 (5-12)

10 (8-13)

2013

All

87

22 (16-30)

18 (12-24)

20 (16-24)

WHO

13 (10-19)

8 (6-13)

11 (8-14)

2014

All

83

23 (17-30)

15 (10-21)

19 (15-24)

WHO

14 (10-19)

7 (5-11)

10 (8-13)


United States

Madsen et al 2020 [22]

1993-1994

≥ 20 years old

250

31 (25-37)

25 (21-30)






1999

≥ 20 years old

298

35 (29-41)

33 (28-38)






2005

≥ 20 years old

318

37 (31-43)

30 (25-34)






2010

≥ 20 years old

303

34 (28-39)

25 (21-30)







Zahuranec et al 2014 [47]

2000

≥ 44 years old

209



52.1 (43.6-62.4)





2010

≥ 44 years old

191



43 (32.1-57.6)






Vietnam

Yamanashi et al 2016 [39]

2009-2011

All

25



29.8 (24.7-35.8)

WHO

36.9
(28.8-46.6)

23.2 (17.1-30.9)

36.9 (26.1-51)


WHO: standard population of the World Health Organisation.

 

Incidence of subarachnoid haemorrhage


Ten studies were identified that determined the CIR of SAH (Table IV). Asia had the largest number of studies, with a total of four (Fig. 1d). The median CIR was 6.5 (CI 95%: 4.8-13.5) cases per 100,000 inhabitants and ranged from 17.5 cases per 100,000 inhabitants in Greece [26] to 4 cases per 100,000 in Nigeria [34]. The CIR was higher among women. Sun et al in China [19], Madsen et al in the United States [40] and Bahonar et al in Iran [30] analysed the evolution of the disease, with different results. As in the other forms of CVD, Sun et al described a clear trend towards an increase in the CIR [19], in contrast to Madsen et al, who reported a decreasing trend [22]. The rising trend in the CIR described by Bahonar et al in Iran [30] was lower than that described by Sun et al in China [19].

 

Table IV. Studies providing information on the incidence of subarachnoid haemorrhage.
 
Study

Period of analysis 

Type of stroke

Age at inclusion

Sample of cases

Raw incidence of men

Raw incidence of women

Total raw incidence

Standardised population

Standardised incidence of men

Standardised incidence of women

Total standardised incidence


Argentina

Bahit et al 2016 [14]

2013-2015

SAH

All

17



6.5 (3.8-10.4)

Segi



6.3 (3.6-10.2)


China 

Sun et al 2014 [19]

2005

SAH

All

7



6.9 (1.8-12)

Segi



4.6 (0.4-8.8)

2008

SAH

All

15



14.8 (7.3-22.3)

Segi



10.6 (4.3-16.9)

2011

SAH

All

15



14.6 (7.2-22)

Segi



11.5 (5-18)


England

Ramadan et al 2018 [29]

2013-2014

SAH

≥ 18 years old

25



10

 





Greece

Tsivgoulis et al 2018 [26]

2010-2012

SAH

≥ 18 years old

31

14.6 (4-25)

23.4 (11-36)

17.5 (10-25)

 

10.6 (2.7-18.4); 4.6 (1.2-7.9); 3.6 (0.9-6.3)

23.4 (11.1-35.4); 7 (3.3-10.7); 4.5 (2.1-6.8)

19.1 (10.9-27.3); 6.3 (3.6-8.9); 4.5 (2.6-6.4)


India

Pandian et al 2016 [28]

2010-2013

SAH

≥ 18 years old

53



5

WHO



4 (3-5)


Iran

Bahomar et al 2017 [30]

2003

SAH

All




3.7 (1.3-7.3)

Segi



4.9 (2.7-9)

2009

SAH

All




2.5 (0.5-5.5)

Segi



2.8 (0.4-6)

2013

SAH

All




4.7 (0.6-8.8)

Segi



5.1 (0.8-9.4)


New Zealand

Krishnamurthi et al 2018 [35]

2011-2012

SAH

≥ 15 years old

79

4 (2-5)

10 (8-13)

7 (6-9)

 

4 (2-6)

10 (8-13)

7 (5-9)


Nigeria

Okon et al 2015 [34]

2010-2011

SAH

All

20

3.7 (3.2-111.4)

8.1 (3.5-97.9)

 






United States

Madsen et al 2020 [22]

1993-1994

SAH

≥ 20 years old

85

8 (5-11)

11 (8-11)






1999

SAH

≥ 20 years old

95

6 (3-9)

14 (11-17)






2005

SAH

≥ 20 years old

91

5 (3-8)

12 (9-15)






2010

SAH

≥ 20 years old

84

5 (3-7)

10 (8-13)







Vietnam

Yamanashi et al 2016 [39]

2009-2011

SAH

All

2




WHO

3.2 (1.2-6.9)

2 (0.5-5.1)

3.2 (0.6-5.1)


SAH: subarachnoid haemorrhage; WHO: standard population of the World Health Organisation.

 

Discussion


This review of the global incidence of CVD in the second decade of the 21st century shows significant differences from one country to another in the study, even within the same continent. Although CVD is a global problem associated with high disability and a high economic and social impact [2], few countries have published information on the CIR or the AIR, and fewer still provide information on trends over time. Among the different forms of CVD, SAH has the lowest number of identified studies. In our review, the country with the highest number of studies was China, and in terms of continents, Europe and Asia.

The variation in the incidence can be attributed to factors that are specific to each study design and to factors related to the population. As expected, studies that excluded subjects under 60 or 65 years of age reported a higher incidence [20,42]. In contrast to previous reviews [9], studies from countries with low per capita income had low CIRs [33,34]. This could be explained by the fact that patient registration is less comprehensive in these countries compared to others with higher per capita income [34] and to lower access to neuroimaging tests [33]. The higher incidence of HS observed in Asian countries can be accounted for by well-known racial and genetic reasons [49]. Another interesting finding is the diversity in the results of the studies carried out in European countries. The Greek study conducted by Tsivgoulis et al had the highest incidence for the CVD forms [26]. The characteristics of the population studied could justify the high figures, given that the study was carried out in an elderly rural population with a significant concentration of vascular risk factors [26].

Overall, differences were observed in the CIR and AIR according to gender. There are known to be differences between men and women in the proportion of vascular risk factors and aetiology [50-52]. The higher concentration of vascular risk factors could explain the higher CIR and AIR both for CVD and for IS and HS in men observed in most of the studies analysed. However, Asian, European and North American studies reported a higher incidence of CVD [24,25,36,40,53] and IS [17,25,53] in women, but this was not the case with HS. This may be explained by the increased prevalence of vascular risk factors among women [53], especially the increase in hypertension with age [54] and by the longer life expectancy [55]. Hence, there are more women in the older age groups [23,40,55]. It is known that there is a higher incidence of SAH among women [26,34,35] although this difference is still to be explained [56].

Most studies reported a downward or stabilising trend in the incidence of CVD, IS, HS and SAH as a consequence of better control of vascular risk factors among the population [35,37]. However, the opposite trend was found in studies conducted in China [18,19,53], Singapore [44], France [24] and Australia [15]. In China, the increased incidence can be explained by the parallel increase in life expectancy and poor control of vascular risk factors [17-19], especially in rural areas [17]. Smoking, unhealthy diets and a decrease in physical activity seem to be causes for concern in that country [18]. The increased incidence was more notable for IS than for HS [18]. The French study conducted by Grimaud et al was designed to explore differences in the incidence of CVD between rural, urban and suburban areas rather than to analyse how the incidence progressed. The reasons given above, such as the increase in life expectancy, can be extrapolated mainly to justify the rising incidence [24,25]. In Australia, there was evidence of a greater increase in the incidence of IS versus HS [15], with an alarming increase in the young adult population.

Our systematic review has limitations that need to be mentioned. The methodologies used in the studies were heterogeneous and this could contribute to the difference in incidence from one territory to another. Above all, there was no homogeneity in the determination of the AIR. Although the results have been identified or classified by country, in most cases they are the result of a study of a particular region rather than from a national data source. For the calculation of the medians of the CI, the sample size in each study was not taken into account.
 

Conclusion


Despite the fact that CVD is a major global problem, there are few studies that analyse its incidence and even fewer that analyse its evolution. The overall median remains high, although the figures are heterogeneous across studies. In contrast to previous reviews from the first decade of the 21st century [57], we can state that the worldwide trend is towards a decrease in the incidence of the disease, probably as a result of a better control of vascular risk factors. Some geographical areas of the Asian continent have been identified with upward trends that are quite alarming.

 

References
 


 1. Collaborators GBDN. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18: 459-80.

 2. King D, Wittenberg R, Patel A, Quayyum Z, Berdunov V, Knapp M. The future incidence, prevalence and costs of stroke in the UK. Age Ageing 2020; 49: 277-82.

 3. Rothwell PM, Coull AJ, Giles MF, Howard SC, Silver LE, Bull LM, et al. Change in stroke incidence, mortality, case-fatality, severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford Vascular Study). Lancet 2004; 363: 1925-33.

 4. Vangen-Lønne AM, Wilsgaard T, Johnsen SH, Løchen ML, Njølstad I, Mathiesen EB. Declining incidence of ischemic stroke: what is the impact of changing risk factors? The Tromsø Study 1995 to 2012. Stroke 2017; 48: 544-50.

 5. Collaboration NCDRF. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017; 389: 37-55.

 6. Collaboration NCDRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016; 387: 1377-96.

 7. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011; 378: 31-40.

 8. Li L, Scott CA, Rothwell PM. Trends in stroke incidence in high-income countries in the 21st century: population-based study and systematic review. Stroke 2020; 51: 1372-80.

 9. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 2014; 383: 245-54.

 10. Ouriques Martins SC, Sacks C, Hacke W, Brainin M, de Assis Figueiredo F, Marques Pontes-Neto O, et al. Priorities to reduce the burden of stroke in Latin American countries. Lancet Neurol 2019; 18: 674-83.

 11. IHME. GBD Compare Data Visualization. Seattle, WA: Institute for Health Metrics and Evaluation, 2016. https: //vizhub.healthdata.org/. Fecha última consulta: 23.05.2021.

 12. Bezzaoucha A, Bouamra A, Zeddam F, Ammimer A, Kadi F, Abdi N, et al. Stroke in the Blida region (Algeria) in 2018: incidence and mortality according to a population-based register. Tunis Med 2020; 98: 8-16.

 13. Al Banna M, Baldawi H, Kadhim A, Humaidan H, Whitford DL. Stroke in Bahrain: rising incidence, multiple risk factors, and suboptimal care. Int J Stroke 2015; 10: 615-8.

 14. Bahit MC, Coppola ML, Riccio PM, Cipriano LE, Roth GA, Lopes RD, et al. First-ever stroke and transient ischemic attack incidence and 30-day case-fatality rates in a population-based study in Argentina. Stroke 2016; 47: 1640-2.

 15. Anderlini D, Wallis G, Marinovic W. Incidence of hospitalization for stroke in Queensland, Australia: younger adults at risk. J Stroke Cerebrovasc Dis 2020; 29: 104797.

 16. Cabral NL, Cougo-Pinto PT, Magalhaes PS, Longo AL, Moro CH, Amaral CH, et al. Trends of stroke incidence from 1995 to 2013 in Joinville, Brazil. Neuroepidemiology 2016; 46: 273-81.

 17. Wang J, Bai L, Shi M, Yang L, An Z, Li B, et al. Trends in age of first-ever stroke following increased incidence and life expectancy in a low-income Chinese population. Stroke 2016; 47: 929-35.

 18. Jiang G, Li W, Wang D, Shen C, Ji Y, Zheng W. Epidemiological transition and distribution of stroke incidence in Tianjin, China, 1988-2010. Public Health 2016; 131: 11-9.

 19. Sun XG, Wang YL, Zhang N, Wang T, Liu YH, Jin X, et al. Incidence and trends of stroke and its subtypes in Changsha, China, from 2005 to 2011. J Clin Neurosci 2014; 21: 436-40.

 20. Llibre-Guerra JC, Valhuerdi Cepero A, Fernández Concepción O, Llibre-Guerra JJ, Gutiérrez RF, Llibre-Rodriguez JJ. Stroke incidence and risk factors in Havana and Matanzas, Cuba. Neurologia 2015; 30: 488-95.

 21. Yafasova A, Fosbøl EL, Christiansen MN, Vinding NE, Andersson C, Kruuse C, et al. Time trends in incidence, comorbidity, and mortality of ischemic stroke in Denmark, 1996-2016. Neurology 2020; 95: e2343-53.

 22. Madsen TE, Khoury JC, Leppert M, Alwell K, Moomaw CJ, Sucharew H, et al. Temporal trends in stroke incidence over time by sex and age in the GCNKSS. Stroke 2020; 51: 1070-6.

 23. Vena AB, Cabré X, Piñol R, Molina J, Purroy F. Assessment of incidence and trends in cerebrovascular disease in the healthcare district of Lleida (Spain) in the period 2010-2014. Neurologia 2020; [Epub ahead of print].

 24. Grimaud O, Lachkhem Y, Gao F, Padilla C, Bertin M, Nowak E, et al. Stroke incidence and case fatality according to rural or urban residence: results from the French Brest Stroke Registry. Stroke 2019; 50: 2661-7.

 25. Meirhaeghe A, Cottel D, Cousin B, Dumont MP, Marécaux N, Amouyel P, et al. Sex differences in stroke attack, incidence, and mortality rates in Northern France. J Stroke Cerebrovasc Dis 2018; 27: 1368-74.

 26. Tsivgoulis G, Patousi A, Pikilidou M, Birbilis T, Katsanos AH, Mantatzis M, et al. Stroke incidence and outcomes in Northeastern Greece: the Evros Stroke Registry. Stroke 2018; 49: 288-95.

 27. Stranjalis G, Kalamatianos T, Gatzonis S, Loufardaki M, Tzavara C, Sakas DE. The incidence of the first-ever stroke in a Mediterranean island population: the isle of Lesvos stroke study. Neuroepidemiology 2014; 43: 206-12.

 28. Pandian JD, Singh G, Kaur P, Bansal R, Paul BS, Singla M, et al. Incidence, short-term outcome, and spatial distribution of stroke patients in Ludhiana, India. Neurology 2016; 86: 425-33.

 29. Ramadan H, Patterson C, Maguire S, Melvin I, Kain K, Teale E, et al. Incidence of first stroke and ethnic differences in stroke pattern in Bradford, UK: Bradford Stroke Study. Int J Stroke 2018; 13: 374-8.

 30. Bahonar A, Khosravi A, Khorvash F, Maracy M, Oveisgharan S, Mohammadifard N, et al. Ten-year trend in stroke incidence and its subtypes in Isfahan, Iran, during 2003-2013. Iran J Neurol 2017; 16: 201-9.

 31. Olindo S, Chausson N, Mejdoubi M, Jeannin S, Rosillette K, Saint-Vil M, et al. Trends in incidence and early outcomes in a Black Afro-Caribbean population from 1999 to 2012: étude réalisée en Martinique et centrée sur l’Incidence des Accidents Vasculaires Cérébraux II Study. Stroke 2014; 45: 3367-73.

 32. Iguchi Y, Kimura K, Sone K, Miura H, Endo H, Yamagata S, et al. Stroke incidence and usage rate of thrombolysis in a Japanese urban city: the Kurashiki stroke registry. J Stroke Cerebrovasc Dis 2013; 22: 349-57.

 33. Neelamegam M, Looi I, Cheah WK, Narayanan P, Hamid AM, Ong LM. Stroke incidence in the South West district of the Penang Island, Malaysia: PEARLs: Penang Acute Stroke Research Longitudinal Study. Prev Med 2013; 57 (Suppl): S77-9.

 34. Okon M, Adebobola NI, Julius S, Adebimpe O, Taiwo AO, Akinyemi A, et al. Stroke incidence and case fatality rate in an urban population. J Stroke Cerebrovasc Dis 2015; 24: 771-7.

 35. Krishnamurthi RV, Barker-Collo S, Parag V, Parmar P, Witt E, Jones A, et al. Stroke incidence by major pathological type and ischemic subtypes in the Auckland Regional Community Stroke Studies: changes between 2002 and 2011. Stroke 2018; 49: 3-10.

 36. Correia M, Magalhães R, Felgueiras R, Quintas C, Guimarães L, Silva MC. Changes in stroke incidence, outcome, and associated factors in Porto between 1998 and 2011. Int J Stroke 2017; 12: 169-79.

 37. Wang Y, Rudd AG, Wolfe CD. Age and ethnic disparities in incidence of stroke over time: the South London Stroke Register. Stroke 2013; 44: 3298-304.

 38. Aked J, Delavaran H, Norrving B, Lindgren A. Temporal trends of stroke epidemiology in Southern Sweden: a population-based study on stroke incidence and early case-fatality. Neuroepidemiology 2018; 50: 174-82.

 39. Yamanashi H, Ngoc MQ, Huy TV, Suzuki M, Tsujino A, Toizumi M, et al. Population-based incidence rates of first-ever stroke in Central Vietnam. PLoS One 2016; 11: e0160665.

 40. Madsen TE, Khoury J, Alwell K, Moomaw CJ, Rademacher E, Flaherty ML, et al. Sex-specific stroke incidence over time in the Greater Cincinnati/Northern Kentucky Stroke Study. Neurology 2017; 89: 990-6.

 41. Lee SU, Kim T, Kwon OK, Bang JS, Ban SP, Byoun HS, et al. Trends in the incidence and treatment of cerebrovascular diseases in Korea: part II. Cerebral infarction, cerebral arterial stenosis, and moyamoya disease. J Korean Neurosurg Soc 2020; 63: 69-79.

 42. Satue E, Vila-Corcoles A, Ochoa-Gondar O, de Diego C, Forcadell MJ, Rodriguez-Blanco T, et al. Incidence and risk conditions of ischemic stroke in older adults. Acta Neurol Scand 2016; 134: 250-7.

 43. Vangen-Lønne AM, Wilsgaard T, Johnsen SH, Carlsson M, Mathiesen EB. Time trends in incidence and case fatality of ischemic stroke: the Tromsø Study 1977-2010. Stroke 2015; 46: 1173-9.

 44. Tan BYQ, Tan JTC, Cheah D, Zheng H, Pek PP, De Silva DA, et al. Long-term trends in ischemic stroke incidence and risk factors: perspectives from an Asian stroke registry. J Stroke 2020; 22: 396-9.

 45. Palm F, Henschke N, Wolf J, Zimmer K, Safer A, Schröder RJ, et al. Intracerebral haemorrhage in a population-based stroke registry (LuSSt): incidence, aetiology, functional outcome and mortality. J Neurol 2013; 260: 2541-50.

 46. Lee SU, Kim T, Kwon OK, Bang JS, Ban SP, Byoun HS, et al. Trends in the incidence and treatment of cerebrovascular diseases in Korea: part I. Intracranial aneurysm, intracerebral hemorrhage, and arteriovenous malformation. J Korean Neurosurg Soc 2020; 63: 56-68.

 47. Zahuranec DB, Lisabeth LD, Sánchez BN, Smith MA, Brown DL, Garcia NM, et al. Intracerebral hemorrhage mortality is not changing despite declining incidence. Neurology 2014; 82: 2180-6.

 48. Sacco S, Ornello R, Degan D, Tiseo C, Pistoia F, Carolei A. Declining incidence of intracerebral hemorrhage over two decades in a population-based study. Eur J Neurol 2016; 23: 1627-34.

 49. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 2010; 9: 167-76.

 50. Purroy F, Vena A, Forne C, de Arce AM, Davalos A, Fuentes B, et al. Age- and sex-specific risk profiles and in-hospital mortality in 13,932 Spanish stroke patients. Cerebrovasc Dis 2019; 47: 151-64.

 51. Cordonnier C, Sprigg N, Sandset EC, Pavlovic A, Sunnerhagen KS, Caso V, et al. Stroke in women - from evidence to inequalities. Nat Rev Neurol 2017; 13: 521-32.

 52. Purroy F, Vicente-Pascual M, Arque G, Baraldes-Rovira M, Begue R, Gallego Y, et al. Sex-related differences in clinical features, neuroimaging, and long-term prognosis after transient ischemic attack. Stroke 2021; 52: 424-33.

 53. Wang J, Ning X, Yang L, Tu J, Gu H, Zhan C, et al. Sex differences in trends of incidence and mortality of first-ever stroke in rural Tianjin, China, from 1992 to 2012. Stroke 2014; 45: 1626-31.

 54. Schnabel RB, Haeusler KG, Healey JS, Freedman B, Boriani G, Brachmann J, et al. Searching for atrial fibrillation poststroke: a white paper of the AF-SCREEN international collaboration. Circulation 2019; 140: 1834-50.

 55. Koton S, Rexrode KM. Trends in stroke incidence in the United States: will women overtake men? Neurology 2017; 89: 982-3.

 56. Maher M, Schweizer TA, Macdonald RL. Treatment of spontaneous subarachnoid hemorrhage: guidelines and gaps. Stroke 2020; 51: 1326-32.

 57. Zhang Y, Chapman AM, Plested M, Jackson D, Purroy F. The incidence, prevalence, and mortality of stroke in France, Germany, Italy, Spain, the UK, and the US: a literature review. Stroke Res Treat 2012; 2012: 43612.

 

Epidemiología del ictus en la última década: revisión sistemática

Introducción. La enfermedad cerebrovascular (ECV) es la responsable de la mayoría de los años de vida ajustados por discapacidad y una de las principales causas de mortalidad. Dicho impacto justifica disponer de datos actualizados sobre su incidencia.

Pacientes y métodos. Se realizó una revisión sistemática de los estudios publicados desde 2010 hasta la actualidad que aportaran información sobre la tasa de incidencia cruda (TIC) y la tasa de incidencia ajustada de la ECV durante la segunda década del siglo xxi.

Resultados. Se identificaron 35 artículos. Veintiocho ofrecieron información sobre la incidencia global de ECV, 19 sobre la incidencia de ictus isquémico (IcI), 19 sobre la de ictus hemorrágico (IH) y 10 sobre la de hemorragia subaracnoidea (HSA). La incidencia fue heterogénea entre países. Así, la mediana de la TIC fue de 149,5 –intervalo de confianza al 95% (IC 95%): 122-256– casos por cada 100.000 habitantes para la ECV; 155 (IC 95%: 95,6-246,12) para el IcI; 29 (IC 95%: 19-43) para el IH; y 6,5 (IC 95%: 4,8-13,5) para la HSA. La incidencia tanto para la ECV como para el IcI y el IH fue mayor en los hombres que en las mujeres en la mayoría de los estudios, a excepción de algunos estudios asiáticos, europeos y norteamericanos. En la mayoría de los estudios se registró una tendencia al descenso o la estabilización en la incidencia, a excepción de estudios realizados en China, Singapur, Francia y Australia.

Conclusión. Existen pocos estudios que analicen la incidencia y aún menos la evolución de la ECV. La mediana global continúa siendo elevada, aunque las cifras son heterogéneas entre los estudios. Existe una tendencia mundial a su decremento, y hay áreas geográficas, sobre todo en el continente asiático, con una preocupante tendencia al incremento.

Palabras clave. Enfermedad cerebrovascular. Hemorragia subaracnoidea. Ictus hemorrágico. Ictus isquémico. Incidencia. Revisión sistemática.

 

© 2021 Revista de Neurología

Si ya es un usuario registrado en Neurologia, introduzca sus datos de inicio de sesión.


Rellene los campos para registrarse en Neurologia.com y acceder a todos nuestros artículos de forma gratuita
Datos básicos
He leído y acepto la política de privacidad y el aviso legal
Seleccione la casilla si desea recibir el número quincenal de Revista de Neurología por correo electrónico. De forma quincenal se le mandará un correo con los títulos de los artículos publicados en Revista de Neurología.
Seleccione la casilla si desea recibir el boletín semanal de Revista de Neurología por correo electrónico. El boletín semanal es una selección de las noticias publicadas diariamente en Revista de Neurología.
Seleccione la casilla si desea recibir información general de neurologia.com (Entrevistas, nuevos cursos de formación, eventos, etc.)
Datos complementarios

Se os solicita los datos de redes para dar repercusión por estos medios a las publicaciones en las que usted participe.

En cumplimiento de la Ley 34/2002, de 11 de julio, de Servicios de la Sociedad de la Información y de Comercio Electrónico (LSSI-CE), Viguera Editores, S.L.U. se compromete a proteger la privacidad de sus datos personales y a no emplearlos para fines no éticos.

El usuario otorga su consentimiento al tratamiento automatizado de los datos incluidos en el formulario. Los datos facilitados se tratarán siempre con la máxima confidencialidad, salvaguardando su privacidad y con los límites que establecen las leyes vigentes en España, y nunca se cederán a personas ajenas a la organización.

Usted tiene derecho a rectificar sus datos personales en cualquier momento informándolo a secretaria@viguera.com. También se le informa de la posibilidad de ejercitar el derecho de cancelación de los datos personales comunicados.



¡CONVIÉRTASE EN USUARIO PREMIUM DE NEUROLOGIA.COM!

Además, por convertirte en usuario premium, recibirá las siguientes ventajas:

  • Plaza asegurada en todos nuestros Másteres (www.ineurocampus.com)
  • Descuento del 5% en los cursos de “Actualización en Neurología”, la FMC que estará disponible próximamente en la web.
  • Descarga gratuita en formato PDF dos de las obras con más éxito publicadas por Viguera Editores:
    • Oromotors Disorders in childhood (M. Roig-Quilis; L. Pennington)
    • Manual de Neuropsicología 2ª ed. (J. Tirapu-Ustárroz; M. Ríos-Lago; F. Maestú)

El precio para hacerse Premium durante el periodo de un año es de 5€, que podrá pagar a continuación a través de una pasarela de pago seguro con tarjeta de crédito, transferencia bancaria o PayPal:

QUIERO HACERME PREMIUM

No deseo hacerme premium


QUIERO MATRICULARME

No deseo matricularme